Double-periodic arrays of vortices
Autor: | Theo J. Schep, Boris N. Kuvshinov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2000 |
Předmět: |
Fluid Flow and Transfer Processes
Physics Partial differential equation Mechanical Engineering Computational Mechanics Plasma Vorticity Condensed Matter Physics Vortex Physics::Fluid Dynamics Classical mechanics Mechanics of Materials Inviscid flow Boundary value problem Poisson's equation Navier–Stokes equations Mathematical physics |
Zdroj: | Physics of Fluids, 12, 3282-3284 |
DOI: | 10.1063/1.1321262 |
Popis: | Analytical solutions to the sinh-Poisson equation are discussed. This equation plays a role in the theory of vortex dynamics [Mallier and Maslowe, Phys. Fluids A 5, 1074 (1993)] and in the discussion of the most probable states of inviscid two-dimensional flows in fluids and plasmas [Montgomery and Joyce, Phys. Fluids 17, 1139 (1974)]. We present a family of double-periodic solutions on a rectangular grid. In limiting cases these solutions reproduce Mallier-Maslowe vortex streets and arrays of Greenhill's point vortices. (C) 2000 American Institute of Physics. [S1070- 6631(00)00912-0]. |
Databáze: | OpenAIRE |
Externí odkaz: |