Synthesis and Characterization of Novel Fluorinated Poly(oxomolybdates)
Autor: | Heinz Rüegger, Greta R. Patzke, Denis Sheptyakov, Alexej Michailovski |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | ChemInform. 37 |
ISSN: | 1522-2667 0931-7597 |
DOI: | 10.1002/chin.200641017 |
Popis: | Two novel poly(oxofluoromolybdate) clusters, [Mo6O18F6]6- and [Mo7O22F3]5-, have emerged from systematic field studies on the hydrothermal fluorination of poly(oxometalates). They are accessible via the hydrothermal treatment of Mo(VI)-based precursors in the presence of MF additives (M = Li, Na, Cs, NMe4). The new fluorinated polyanions are stabilized by specific alkali-cation combinations, and their packing motifs can be tuned through the careful choice of cations and synthetic parameters. The [Mo6O18F6]6- anion can be described as a cored and fluorinated form of the Anderson-Evans cluster type. It is stabilized by the interaction of two alkali cations with the fluorinated faces of the ring-shaped anion. The partial replacement of these capping alkali cations by the bulky, organic NMe4(+) cation leads to the formation of [Mo7O22F3](5-)-based compounds. Thus, the extent of fluorination can be controlled through the polarizability of the cationic environment: in the [Mo7O22F3]5- anion, half of the fluoride atoms of the [Mo6O18F6]6- anion are replaced by a capping MoO4 tetrahedron, thereby rendering this anion a fluorinated, lacunar derivative of the alpha-[Mo8O26]4- octamolybdate anion. All compounds have been structurally characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. The templating role of the alkali cations is discussed and explained with the help of electrostatic calculations. |
Databáze: | OpenAIRE |
Externí odkaz: |