Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism
Autor: | J. Muñoz Masqué, E. Rosado María |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Class (set theory)
010308 nuclear & particles physics Matemáticas 010102 general mathematics Mathematical analysis Fibered knot First order 01 natural sciences Manifold symbols.namesake Computational Theory and Mathematics Hamiltonian formalism 0103 physical sciences symbols Order (group theory) Covariant Hamiltonian field theory Geometry and Topology 0101 mathematics Mathematics::Symplectic Geometry Analysis Lagrangian Mathematics Mathematical physics |
Zdroj: | Differential Geometry and its Applications, ISSN 0926-2245, 2014-09, No. 35 Archivo Digital UPM instname |
Popis: | Second-order Lagrangian densities admitting a first-order Hamiltonian formalism are studied; namely, i) necessary and sufficient conditions for the Poincaré–Cartan form of a second-order Lagrangian on an arbitrary fibred manifold p : E → N to be projectable onto J 1 E are explicitly determined; ii) for each of such Lagrangians, a first-order Hamiltonian formalism is developed and a new notion of regularity is introduced; iii) the variational problems of this class defined by regular Lagrangians areprovedtobeinvolutive |
Databáze: | OpenAIRE |
Externí odkaz: |