Geometric Counting on Wavefront Real Spherical Spaces

Autor: Bernhard Krötz, Henrik Schlichtkrull, Eitan Sayag
Rok vydání: 2017
Předmět:
Zdroj: Acta Mathematica Sinica, English Series. 34:488-531
ISSN: 1439-7617
1439-8516
DOI: 10.1007/s10114-017-7164-5
Popis: We provide $L^p$-versus $L^\infty$-bounds for eigenfunctions on a real spherical space $Z$ of wavefront type. It is shown that these bounds imply a non-trivial error term estimate for lattice counting on $Z$. The paper also serves as an introduction to geometric counting on spaces of the mentioned type. Section 7 on higher rank is new and extends the result from v1 to higher rank. Final version. To appear in Acta Math. Sinica.
46 pages
Databáze: OpenAIRE