Geometric Counting on Wavefront Real Spherical Spaces
Autor: | Bernhard Krötz, Henrik Schlichtkrull, Eitan Sayag |
---|---|
Rok vydání: | 2017 |
Předmět: |
Wavefront
Mathematics - Number Theory Applied Mathematics General Mathematics 010102 general mathematics Mathematical analysis Spherical space Eigenfunction 01 natural sciences Lattice (order) 0103 physical sciences FOS: Mathematics Spectral analysis Number Theory (math.NT) 010307 mathematical physics Representation Theory (math.RT) 0101 mathematics Mathematics - Representation Theory Mathematics |
Zdroj: | Acta Mathematica Sinica, English Series. 34:488-531 |
ISSN: | 1439-7617 1439-8516 |
DOI: | 10.1007/s10114-017-7164-5 |
Popis: | We provide $L^p$-versus $L^\infty$-bounds for eigenfunctions on a real spherical space $Z$ of wavefront type. It is shown that these bounds imply a non-trivial error term estimate for lattice counting on $Z$. The paper also serves as an introduction to geometric counting on spaces of the mentioned type. Section 7 on higher rank is new and extends the result from v1 to higher rank. Final version. To appear in Acta Math. Sinica. 46 pages |
Databáze: | OpenAIRE |
Externí odkaz: |