Non-commutative Desingularization of Determinantal Varieties, II: Arbitrary Minors

Autor: Michel Van den Bergh, Ragnar-Olaf Buchweitz, Graham J. Leuschke
Přispěvatelé: Algebra, Mathematics
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Vrije Universiteit Brussel
Popis: In our paper "Non-commutative desingularization of determinantal varieties, I" we constructed and studied non-commutative resolutions of determinantal varieties defined by maximal minors. At the end of the introduction we asserted that the results could be generalized to determinantal varieties defined by non-maximal minors, at least in characteristic zero. In this paper we prove the existence of non-commutative resolutions in the general case in a manner which is still characteristic free, and carry out the explicit description by generators and relations in characteristic zero. As an application of our results we prove that there is a fully faithful embedding between the bounded derived categories of the two canonical (commutative) resolutions of a determinantal variety, confirming a well-known conjecture of Bondal and Orlov in this special case.
Comment: 61 pages, greatly expanded. Now includes a complete treatment of the case of characteristic zero. All comments welcome
Databáze: OpenAIRE