Balancing vectors in any norm
Autor: | Nicole Tomczak-Jaegermann, Kunal Talwar, Daniel Dadush, Aleksandar Nikolov |
---|---|
Přispěvatelé: | Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Convex geometry
010102 general mathematics Regular polygon Approximation algorithm 0102 computer and information sciences Gaussian measure Binary logarithm 01 natural sciences Upper and lower bounds M-ellipsoid Combinatorics 010201 computation theory & mathematics Norm (mathematics) K-convexity 0101 mathematics Discrepancy Discrepancy theory Mathematics |
Zdroj: | FOCS |
Popis: | In the vector balancing problem, we are given symmetric convex bodies C and K in R^n, and our goal is to determine the minimum number β ≥ 0, known as the vector balancing constant from C to K, such that for any sequence of vectors in C there always exists a signed combination of them lying inside β K. Many fundamental results in discrepancy theory, such as the Beck-Fiala theorem (Discrete Appl.~Math '81), Spencer's "six standard deviations suffice" theorem (Trans.~Amer.~Math.~Soc '85) and Banaszczyk's vector balancing theorem (Random Structures & Algorithms '98) correspond to bounds on vector balancing constants. The above theorems have inspired much research in recent years within theoretical computer science. In this work, we show that all vector balancing constants admit "good" approximate characterizations, with approximation factors depending only polylogarithmically on the dimension n. First, we show that a volumetric lower bound due to Banaszczyk is tight within a O(log n) factor. Our proof is algorithmic, and we show that Rothvoss's (FOCS '14) partial coloring algorithm can be analyzed to obtain these guarantees. Second, we present a novel convex program which encodes the "best possible way" to apply Banaszczyk's vector balancing theorem for bounding vector balancing constants from above, and show that it is tight within an O(log^2.5 n) factor. This also directly yields a corresponding polynomial time approximation algorithm both for vector balancing constants, and for the hereditary discrepancy of any sequence of vectors with respect to an arbitrary norm. |
Databáze: | OpenAIRE |
Externí odkaz: |