On the solution of equilibrium points of power systems with penetration of power electronics considering converter limitation
Autor: | Jie Song, Marc Cheah-Mane, Eduardo Prieto-Araujo, Oriol Gomis-Bellmunt |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica, Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
operation limits
General Computer Science Computer science 020209 energy Steady-state analysis 02 engineering and technology System of linear equations Electric power system short-circuit calculation Control theory Voltage source converter Power electronics 0202 electrical engineering electronic engineering information engineering General Materials Science Current saturation Voltage source Equilibrium point Steady state voltage source converter 020208 electrical & electronic engineering Operation limits General Engineering Enginyeria electrònica [Àrees temàtiques de la UPC] AC power Converters TK1-9971 current saturation Electrònica de potència Short-circuit calculation Electrical engineering. Electronics. Nuclear engineering |
Zdroj: | IEEE Access, Vol 9, Pp 67143-67153 (2021) UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | This article presents a novel approach for black-box modeling of 270 V-to-28 V dc–dc step-down converters used in more electric aircrafts. These converters normally feed constant power loads. The proposed deep learning approach, uses offline experimental data of the converter to find an accurate model that reproduces its behavior. It covers a broad range of loading conditions to build a model that replicates the whole behavior of the converter. This article compares the performance of the proposed method, which requires a very low computational burden once the model is trained, with that of a conventional recurrent neural network topology. Results presented in this article show the ability of the obtained solution to accurately emulate the behavior of the real step-down converter when the internal structure is unknown, with no knowledge of the internal parameters, thus preventing disclosure of manufacturer's confidential data. The modeling strategy presented in this article is validated with experimental data by using a step-down converter used in aircrafts. The approach is compared to existing modeling techniques to test its accuracy. This approach can also be applied to many power devices, including diverse types of power converters, power supplies, or filters among others. |
Databáze: | OpenAIRE |
Externí odkaz: |