ADABeV: Automatic Detection of Abnormal Behavior in Video-surveillance
Autor: | Nour Charara, Iman Jarkass, Maria Sokhn, Elena Mugellini, Omar ABOU KHALED |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | BASE-Bielefeld Academic Search Engine |
DOI: | 10.5281/zenodo.1057171 |
Popis: | Intelligent Video-Surveillance (IVS) systems are being more and more popular in security applications. The analysis and recognition of abnormal behaviours in a video sequence has gradually drawn the attention in the field of IVS, since it allows filtering out a large number of useless information, which guarantees the high efficiency in the security protection, and save a lot of human and material resources. We present in this paper ADABeV, an intelligent video-surveillance framework for event recognition in crowded scene to detect the abnormal human behaviour. This framework is attended to be able to achieve real-time alarming, reducing the lags in traditional monitoring systems. This architecture proposal addresses four main challenges: behaviour understanding in crowded scenes, hard lighting conditions, multiple input kinds of sensors and contextual-based adaptability to recognize the active context of the scene. {"references":["A. M. Cheriyadat and R. Radke, \"Detecting dominant motions in dense\ncrowds,\" IEEE J. Select. Topics Signal Process, vol. 2, no. 4, pp. 568-\n581, Aug. 2008.","T. Soumya, \"A Moving object segmentation method for low illumination\nnight videos,\" in Proceeding of WCECS, October 22-24, San Francisco,\nUSA, 2008.","R. Mehran, A. Oyama, and M. Shah, \"Abnormal crowd behavior\ndetection using social force model,\" in Proc. IEEE Conf. Computer\nVision and Pattern Recognition, 2009.","G. J. Brostow and R. Cipolla, \"Unsupervised Bayesian detection of\nindependent motion in crowds,\" in Proc. IEEE Conf. Computer Vision\nand Pattern Recognition, Washington, DC, pp. 594-60, 2006.","W. Lin, M.T. Sun, R. Poovendran, Z. Zhang, \"Group Event Detection\nfor Video Surveillance,\" in Proceedings of ISCAS'2009. pp.2830~2833.","E. L. Andrade, S. Blunsden, and R. B. Fisher, \"Modelling crowd scenes\nfor event detection,\" in Proc. Int. Conf. Pattern Recognition,\nWashington, DC, pp. 175-178, 2006.","R. Raskar, A. Ilie, and J. Yu, \"Image fusion for context enhancement\nand video surrealism,\" in Proc. of the 3rd international symposium on\nNon-photorealistic animation and rendering (NPAR), pp. 85-152.\nAnnecy, France, June 2004.","Y. Cai, K. Huang, T. Tan, and Y. Wang, \"Context enhancement of\nnighttime surveillance by image fusion,\" in Proceedings of ICPR, pp.\n980-983, 2006.","A. Nakazawa, H. Kato, and S. Inokuchi, \"Human tracking using\ndistributed vision systems,\" in Proceedings of the 14thICPR, pp. 593-\n596.\n[10] J. W. Davis and V. Sharma, \"Fusion-Based Background-Subtraction\nusing Contour Saliency,\" Computer Vision and Pattern Recognition, 20-\n26 June, 2005.\n[11] H. Torresan, B. Turgeon, C. Ibarra-Castanedo, P. Hébert, X. Maldague,\n\"Advanced Surveillance Systems: Combining Video and Thermal\nImagery for Pedestrian Detection,\" in Proc. of SPIE, Thermosense\nXXVI, volume 5405 of SPIE, pp. 506-515, April 2004.\n[12] D. Gatica-Perez, G. Lathoud, I. McCowan, J. Odobez, and D. Moore,\n\"Audio-visual speaker tracking with importance particle filter,\" in IEEE\nInternational Conference on Image Processing (ICIP03), 2003.\n[13] R. Poppe, \"A survey on vision-based human action recognition,\" Image\nand Vision Computing, 28(6):976-990, 2010.\n[14] T. B. Moeslund, A. Hilton, and V. Kruger, \"A survey of advances in\nvision-based human motion capture and analysis,\" Computer Vision and\nImage Understanding, 104(2):90-126, 2006.\n[15] P. Kumar, S. Ranganath, K. Sengupta, \"Behavior Interpretation from\nTraffic Video Streams,\" in Proceedings of the IEEE International\nConference on Intelligent Transportation Systems\". October 12-15,\n2003, Shanghai, China, volume 2:pp.1214-1219.\n[16] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos. \"Anomaly\ndetection in crowded scenes,\" in IEEE Conference on Computer Vision\nand Pattern Recognition, 2010.\n[17] P. Smets and R. Kennes, \"The transferable belief model,\" Artificial\nIntelligence, vol. 66, no. 2, pp. 191-234, Dec. 1994.\n[18] M. Guironnet, D. Pellerin, M. Rombaut, \"Camera motion classification\nbased on transferable belief model,\" European Signal Processing\nConference (EUSIPCO-2006), Florence, Italy, September 2006.\n[19] A. Hakeem, M. Shah, \"Multiple Agent Event Detection and\nRepresentation in Videos,\" in Proceedings of American Association for\nArtificial Intelligence AAAI, 2005.\n[20] A. Ilie, R. Raskar, J. Yu, \"Gradient domain context enhancement for\nfixed cameras,\" in Proc. of ACCV. Jeju Island, Korea, January 2004.\n[21] V. T. Vu, F. Bremond, M. Thonnat, \"Human behavior visualisation and\nsimulation for automatic video understanding,\" in Proc. of the 10th Int.\nConf. in Central Europe on Computer Graphics, Visualization and\nComputer Vision (WSCG-2002), Plzen-Bory, Czech Republic, 2002.\n[22] J. Cassens, A. Kofod-Petersen, \"Using activity theory to model context\nawareness: a qualitative study,\" in Proceedings of the 19th\nInternational Florida Artificial Intelligence Research Society\nConference, Florida, USA, AAAI Press, 2006.\n[23] O. Brdicka, P. Reignier, J. L. Crowley, \"Modéliser et faire évoluer le\ncontexte dans des environnements intelligents,\" In Ingénierie des\nSystèmes d'Information (ISI), Lavoisier, Vol. 11, No. 5, December 2006.\n[24] F. Bremond, M. Thonnat, \"Issues of representing context illustrated by\nvideo-surveillance applications,\" in International Journal of Human-\nComputer Studies - Special issue: using context in applications,\nVolume 48 Issue 3, March 1998.\n[25] T. Strat, \"Employing contextual information in computer vision,\" in\nDARPA93, pages 217-229, 1993.\n[26] H.H. Nagel, \"From image sequences towards conceptual descriptions,\"\nImage and Vision Computing, 6(2):59-74, 1988.\n[27] M. Mohnhaupt, B. Neumann, \"Understanding object motion:\nRecognition, learning and spatiotemporal reasoning,\" research report\nFBI-HH-B-145/90, University of Hamburg.\n[28] W-S. Zhen, S. Gong, T. Xiang, \"Quantifying contextual information for\nobject detection,\" in IEEE 12th International Conference on Computer\nVision, pp.932-939, Sept. 29 2009-Oct. 2 2009. doi:\n10.1109/ICCV.2009.545934\n[29] N. Dalal, B. Triggs. \"Histograms of oriented gradients for human\ndetection,\" in CVPR, 2005.\n[30] G. Heitz, D. Koller. \"Learning spatial context: Using stuff to find\nthings,\" in ECCV, 2008.\n[31] A. Adam, E. Rivlin, I. Shimshoni and D. Reinitz, \"Robust Real-Time\nUnusual Event Detection Using Multiple Fixed-Location Monitors,\" in\nIEEE Transactions on Pattern Analysis and Machine Intelligence, vol.\n30, no. 3, March 2008.\n[32] M. D. Breitenstein, H. Grabner, and L. V. Gool, \"Hunting Nessie - realtime\nabnormality detection from webcams,\" in IEEE International\nWorkshop on Visual Surveillance, 2009.\n[33] S. Saxena, F. Brémond, M. Thonnat, R. Ma. \"Crowd Behavior\nRecognition for Video Surveillance,\" in Advanced Concepts for\nIntelligent Vision Systems (ACIVS 08), 2008."]} |
Databáze: | OpenAIRE |
Externí odkaz: |