Release kinetics of coated, donut-shaped tablets for water soluble drugs
Autor: | Cherng-ju Kim |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | European Journal of Pharmaceutical Sciences. 7:237-242 |
ISSN: | 0928-0987 |
DOI: | 10.1016/s0928-0987(98)00029-3 |
Popis: | Coated, donut-shaped tablets (CDST) were designed to achieve parabolic and linear drug release profiles. When rapidly erodible polymers (HPMC E3, HPC, PEG8000, PEOs (Mw=100000 and 200000)) were used, the release profiles of diltiazem HCl from the tablets becomes parabolic whereas zero-order release was achieved by using slowly erodible polymers (HPMC E5, HPMC E15, PEO (Mw=300000)). Drug release from the rapidly erodible polymers was governed by the pure erosion of the polymer while both polymer erosion and drug diffusion controlled drug release from the slowly erodible polymers. As drug loading was increased from 10% to 39% w/w, the drug release rate from CDST based on HPMC E3 became faster and parabolic whereas that from CDST based on HPMC E5 was linear. The slowly erodible polymer (HPMC E5) provided parabolic release profiles when drug loading was greater than 49% w/w. In this case, drug release mechanisms likely shifted from a combination of polymer erosion and drug diffusion to pure polymer erosion due to the enhancement of polymer erosion by faster influx of water. As drug solubility decreased from 61.6% w/v (diltiazem HCl), 1.0% w/v (theophylline), to 0.5% w/v (nicardipine HCl), the drug release rate from CDST based on HPMC E3 decreased due to polymer erosion mechanism but there was little difference in release rate from CDST based on HPMC E5 due to the greater contribution of drug diffusion to drug release kinetics along with polymer erosion. As expected, the drug release rate of diltiazem HCl from HPMC E3 and E5 was significantly influenced by stirring rate and hole size. |
Databáze: | OpenAIRE |
Externí odkaz: |
Pro tento záznam nejsou dostupné žádné jednotky.