Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist

Autor: Emma G. Norris, Xuan Sabrina Pan, Denise C. Hocking
Rok vydání: 2022
DOI: 10.1101/2022.04.11.487882
Popis: Among the novel mutations distinguishing SARS-CoV-2 from similar respiratory coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2 (ACE2)-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. In the present study, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared to RGD-containing, integrin-binding fragments of fibronectin. S1-RBD supported adhesion of both fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells. Cell adhesion to S1-RBD was cation- and RGD-dependent, and was inhibited by blocking antibodies against αv and β3, but not α5 or β1, integrins. Similarly, direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, was observed by surface plasmon resonance. Adhesion to S1-RBD initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin, Akt activation, and supported cell proliferation. Together, these data demonstrate that the RGD sequence within S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raise the possibility that S1-mediated dysregulation of ECM dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Databáze: OpenAIRE