Utterance partitioning for speaker recognition: an experimental review and analysis with new findings under GMM-SVM framework
Autor: | Hemant A. Patil, Nirmalya Sen, Krothapalli Sreenivasa Rao, T. K. Basu, Shyamal Kumar Das Mandal, Md. Sahidullah |
---|---|
Přispěvatelé: | R. H. Sapat College of Engineering Management Studies & Research, Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Indian Institute of Technology Kharagpur (IIT Kharagpur), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2021 |
Předmět: |
Signal Processing (eess.SP)
FOS: Computer and information sciences Computer Science - Machine Learning Linguistics and Language Boosting (machine learning) Computer science Speech recognition ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION 02 engineering and technology Speaker Recognition Language and Linguistics Machine Learning (cs.LG) 030507 speech-language pathology & audiology 03 medical and health sciences GMM-UMB Classifier [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Classifier (linguistics) FOS: Electrical engineering electronic engineering information engineering 0202 electrical engineering electronic engineering information engineering Electrical Engineering and Systems Science - Signal Processing Duration (project management) Short Test Utterance Perspective (graphical) 020206 networking & telecommunications Speaker recognition Mixture model GMM-SVM Classifier Human-Computer Interaction Support vector machine ComputingMethodologies_PATTERNRECOGNITION Utterance Partitioning Duration Variability Computer Vision and Pattern Recognition 0305 other medical science Software Utterance |
Zdroj: | International Journal of Speech Technology International Journal of Speech Technology, Springer Verlag, In press, ⟨10.1007/s10772-021-09862-8⟩ International Journal of Speech Technology, 2021, 24, pp.1067-1088. ⟨10.1007/s10772-021-09862-8⟩ |
ISSN: | 1572-8110 1381-2416 |
DOI: | 10.1007/s10772-021-09862-8 |
Popis: | The performance of speaker recognition system is highly dependent on the amount of speech used in enrollment and test. This work presents a detailed experimental review and analysis of the GMM-SVM based speaker recognition system in presence of duration variability. This article also reports a comparison of the performance of GMM-SVM classifier with its precursor technique Gaussian mixture model-universal background model (GMM-UBM) classifier in presence of duration variability. The goal of this research work is not to propose a new algorithm for improving speaker recognition performance in presence of duration variability. However, the main focus of this work is on utterance partitioning (UP), a commonly used strategy to compensate the duration variability issue. We have analysed in detailed the impact of training utterance partitioning in speaker recognition performance under GMM-SVM framework. We further investigate the reason why the utterance partitioning is important for boosting speaker recognition performance. We have also shown in which case the utterance partitioning could be useful and where not. Our study has revealed that utterance partitioning does not reduce the data imbalance problem of the GMM-SVM classifier as claimed in earlier study. Apart from these, we also discuss issues related to the impact of parameters such as number of Gaussians, supervector length, amount of splitting required for obtaining better performance in short and long duration test conditions from speech duration perspective. We have performed the experiments with telephone speech from POLYCOST corpus consisting of 130 speakers. International Journal of Speech Technology, Springer Verlag, In press |
Databáze: | OpenAIRE |
Externí odkaz: |