Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity

Autor: María del Carmen Martínez-Ballesta, Micaela Carvajal, Christophe Maurel, Luis López-Pérez
Přispěvatelé: Departemento de Nutricion Vegetal, Centro de Edafologia y Biologia Aplicada del Segura, Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
0106 biological sciences
Salinity
MESH: Plant Roots
Plant Science
Sodium Chloride
01 natural sciences
Biochemistry
Plant Roots
MESH: Proton-Translocating ATPases
Electrolytes
MESH: Electrolytes
chemistry.chemical_classification
0303 health sciences
Chemistry
Lipid composition
General Medicine
Salt Tolerance
Adaptation
Physiological

Proton-Translocating ATPases
MESH: Permeability
H+-ATPase
Plasma membrane
MESH: Sodium Chloride
Membrane permeability
Membrane lipids
MESH: Biological Transport
Aquaporin
Brassica
Horticulture
Aquaporins
Permeability
03 medical and health sciences
Membrane Lipids
MESH: Aquaporins
MESH: Water
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
Molecular Biology
030304 developmental biology
Water transport
MESH: Salt-Tolerance
ACL
Cell Membrane
Broccoli
Fatty acid
Water
Biological Transport
MESH: Brassica
MESH: Adaptation
Physiological

Sterol
Membrane protein
MESH: Membrane Lipids
010606 plant biology & botany
MESH: Cell Membrane
Zdroj: Phytochemistry
Phytochemistry, Elsevier, 2009, 70 (4), pp.492-500. ⟨10.1016/j.phytochem.2009.01.014⟩
ISSN: 0031-9422
DOI: 10.1016/j.phytochem.2009.01.014⟩
Popis: Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699; International audience; Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H(+)-ATPase. However, there was no effect of NaCl on water permeability (P(f)) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H(+)-ATPase activity, thereby helping to reduce partially the Na(+) concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H(+)-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.
Databáze: OpenAIRE