Hilbert Schemes and Toric Degenerations for Low Degree Fano Threefolds
Autor: | Jan Arthur Christophersen, Nathan Ilten |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Pure mathematics
Degree (graph theory) Mathematics::Commutative Algebra Applied Mathematics General Mathematics 010102 general mathematics Fano plane 01 natural sciences Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Hilbert scheme 14J45 13F55 14D15 14M25 0103 physical sciences FOS: Mathematics Gravitational singularity 010307 mathematical physics 0101 mathematics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Mathematics |
Popis: | For fixed degree $d\leq 12$, we study the Hilbert scheme of degree $d$ smooth Fano threefolds in their anticanonical embeddings. We use this to classify all possible degenerations of these varieties to toric Fano varieties with at most canonical Gorenstein singularities. 24 pages, 2 figures; v2 simplified exposition by using rolling factors format where applicable; v3 further revisions to exposition, changed title |
Databáze: | OpenAIRE |
Externí odkaz: |