Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice

Autor: Lenka Hruba, Alexandre Seillier, Armia Zaki, Andrea Giuffrida, Aron H. Lichtman, Lance R. McMahon, Benjamin F. Cravatt
Rok vydání: 2015
Předmět:
Zdroj: Journal of Pharmacology and Experimental Therapeutics. 353:261-268
ISSN: 1521-0103
0022-3565
DOI: 10.1124/jpet.115.222836
Popis: Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Δ(9)-THC dose-dependently increased Δ(9)-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide] and URB597 [(3'-​(aminocarbonyl)[1,​1'-​biphenyl]-​3-​yl)-​cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-​nitrophenyl-​4-​(dibenzo[d][1,​3]dioxol-​5-​yl(hydroxy)methyl)piperidine-​1-​carboxylate] alone did not substitute for the Δ(9)-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate] fully substituted for Δ(9)-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Δ(9)-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Δ(9)-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Δ(9)-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were similar among brain regions. Overall, these results suggest that increasing both endogenous 2-AG and AEA produces qualitatively unique effects (i.e., the subjective effects of cannabis) that are not obtained from increasing either 2-AG or AEA separately.
Databáze: OpenAIRE