Analytic expression for the mean time to absorption for a random walker on the Sierpinski fractal. III. the effect of non-nearest-neighbor jumps
Autor: | V. Balakrishnan, John J. Kozak |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Euclidean dimensions
Analytical expressions Random processes Nearest-neighbors Sierpinski triangle k-nearest neighbors algorithm Combinatorics Fractal Fractals Random walker algorithm Random walkers Sierpinski fractals Euclidean geometry Analytic expressions Absorption (logic) Sierpinski Mathematics First-passage time |
Zdroj: | IndraStra Global. |
ISSN: | 2381-3652 |
Popis: | We present exact, analytic results for the mean time to trapping of a random walker on the class of deterministic Sierpinski graphs embedded in d?2 Euclidean dimensions, when both nearest-neighbor (NN) and next-nearest-neighbor (NNN) jumps are included. Mean first-passage times are shown to be modified significantly as a consequence of the fact that NNN transitions connect fractals of two consecutive generations. � 2013 American Physical Society. |
Databáze: | OpenAIRE |
Externí odkaz: |