A new class of 2m-point binary non-stationary subdivision schemes
Autor: | Maysaa Al-Qurashi, Zafar Ullah, Mehwish Bari, Kottakkaran Sooppy Nisar, Dumitru Baleanu, Abdul Ghaffar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Curvature and torsion
MathematicsofComputing_GENERAL Binary number Monotonic function Curvature 01 natural sciences Convexity Applied mathematics 0101 mathematics Subdivision Mathematics Shape preservation Binary approximating schemes Algebra and Number Theory Partial differential equation business.industry Applied Mathematics lcsh:Mathematics 010102 general mathematics Lagrange polynomials lcsh:QA1-939 010101 applied mathematics Ordinary differential equation Torsion (algebra) business Convergence Analysis |
Zdroj: | Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-19 (2019) |
ISSN: | 1687-1847 |
DOI: | 10.1186/s13662-019-2264-4 |
Popis: | A new class of 2m-point non-stationary subdivision schemes (SSs) is presented, including some of their important properties, such as continuity, curvature, torsion monotonicity, and convexity preservation. The multivariate analysis of subdivision schemes is extended to a class of non-stationary schemes which are asymptotically equivalent to converging stationary or non-stationary schemes. A comparison between the proposed schemes, their stationary counterparts and some existing non-stationary schemes has been depicted through examples. It is observed that the proposed SSs give better approximation and more effective results. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |