Multiple Solutions for a Singular Problem Involving the Fractional $$p$$-$$q$$-Laplacian Operator

Autor: A Ghanmi, Tarek Kenzizi, Nguyen Thanh Chung
Rok vydání: 2022
Předmět:
Zdroj: Mathematical Notes. 112:664-673
ISSN: 1573-8876
0001-4346
DOI: 10.1134/s0001434622110049
Popis: This paper deals with the following singular problem: \begin{align*} \begin{cases} (-\Delta)^s_p u+ \mu(-\Delta)^s_q u =\frac{a(x)}{ u^\gamma} +\lambda f(x,u) & in \Omega, u = 0,& in \mathbb{R}^N\setminus\Omega, \end{cases} \end{align*} where $\Omega\subset\mathbb{R}^N$ ($N\geq 3$) are a bounded smooth domain, $f\in C(\Omega\times \mathbb{R}, \mathbb{R})$ is positively homogeneous of degree $r-1$, $a\in L^\infty(\Omega)$, $a(x)>0$ for almost every $x\in \Omega$, $\lambda$, $\mu >0$, $s\in(0,1)$, $N> ps$, and $0
Databáze: OpenAIRE