Light Euclidean Spanners with Steiner Points
Autor: | Le, Hung, Solomon, Shay |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Computational Geometry (cs.CG)
FOS: Computer and information sciences Steiner spanners light spanners Theory of computation → Computational geometry Computer Science - Computational Geometry Computer Science::Computational Geometry F.2.2 Computer Science::Data Structures and Algorithms Euclidean spanners |
Popis: | The FOCS'19 paper of Le and Solomon, culminating a long line of research on Euclidean spanners, proves that the lightness (normalized weight) of the greedy $(1+\epsilon)$-spanner in $\mathbb{R}^d$ is $\tilde{O}(\epsilon^{-d})$ for any $d = O(1)$ and any $\epsilon = \Omega(n^{-\frac{1}{d-1}})$ (where $\tilde{O}$ hides polylogarithmic factors of $\frac{1}{\epsilon}$), and also shows the existence of point sets in $\mathbb{R}^d$ for which any $(1+\epsilon)$-spanner must have lightness $\Omega(\epsilon^{-d})$. Given this tight bound on the lightness, a natural arising question is whether a better lightness bound can be achieved using Steiner points. Our first result is a construction of Steiner spanners in $\mathbb{R}^2$ with lightness $O(\epsilon^{-1} \log \Delta)$, where $\Delta$ is the spread of the point set. In the regime of $\Delta \ll 2^{1/\epsilon}$, this provides an improvement over the lightness bound of Le and Solomon [FOCS 2019]; this regime of parameters is of practical interest, as point sets arising in real-life applications (e.g., for various random distributions) have polynomially bounded spread, while in spanner applications $\epsilon$ often controls the precision, and it sometimes needs to be much smaller than $O(1/\log n)$. Moreover, for spread polynomially bounded in $1/\epsilon$, this upper bound provides a quadratic improvement over the non-Steiner bound of Le and Solomon [FOCS 2019], We then demonstrate that such a light spanner can be constructed in $O_{\epsilon}(n)$ time for polynomially bounded spread, where $O_{\epsilon}$ hides a factor of $\mathrm{poly}(\frac{1}{\epsilon})$. Finally, we extend the construction to higher dimensions, proving a lightness upper bound of $\tilde{O}(\epsilon^{-(d+1)/2} + \epsilon^{-2}\log \Delta)$ for any $3\leq d = O(1)$ and any $\epsilon = \Omega(n^{-\frac{1}{d-1}})$. Comment: Add comments on reducing log(spread) to log(n) |
Databáze: | OpenAIRE |
Externí odkaz: |