Modelling the functional dependency between root and shoot compartments to predict the impact of the environment on the architecture of the whole plant. Methodology for model fitting on simulated data using Deep Learning techniques
Autor: | Jean-François Barczi, Yves Caraglio, Philippe Borianne, Abel Louis Masson, Eric Nicolini |
---|---|
Přispěvatelé: | AgroParisTech, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Root (linguistics) Plant Science [SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy 01 natural sciences apprentissage machine Mathematics Facteur du milieu [SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics Modeling and Simulation Simulated data Shoot Calibration Biological system F40 - Écologie végétale Whole plant F60 - Physiologie et biochimie végétale DeepLearning Model fitting 010603 evolutionary biology Biochemistry Genetics and Molecular Biology (miscellaneous) [SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/Ecosystems Architecture Croissance Modélisation environnementale Changement climatique FSPM Root/Shoot business.industry Deep learning 15. Life on land Modélisation 13. Climate action Pousse Artificial intelligence U30 - Méthodes de recherche Plante de culture [SDE.BE]Environmental Sciences/Biodiversity and Ecology business Functional dependency Agronomy and Crop Science Racine 010606 plant biology & botany |
Zdroj: | in silico Plants in silico Plants, Oxford Academic, In press, ⟨10.1093/insilicoplants/diab036⟩ in silico Plants, 2022, 4 (1), ⟨10.1093/insilicoplants/diab036⟩ In Silico Plants |
Popis: | Tree structural and biomass growth studies mainly focus on the shoot compartment. Tree roots usually have to be taken apart due to the difficulties involved in measuring and observing this compartment, particularly root growth. In the context of climate change, the study of tree structural plasticity has become crucial and both shoot and root systems need to be considered simultaneously as they play a joint role in adapting traits to climate change (water availability for roots and light or carbon availability for shoots). We developed a botanically accurate whole-plant model and its simulator (RoCoCau) with a linkable external module (TOY) to represent shoot and root compartment dependencies and hence tree structural plasticity in different air and soil environments. This paper describes a new deep neural network calibration trained on simulated data sets computed from a set of more than 360 000 random TOY parameter values and random climate values. These data sets were used for training and for validation. For this purpose, we chose VoxNet, a convolutional neural network designed to classify 3D objects represented as a voxelized scene. We recommend further improvements for VoxNet inputs, outputs and training. We were able to teach the network to predict the value of environment data well (mean error < 2 %), and to predict the value of TOY parameters for plants under water stress conditions (mean error < 5 % for all parameters), and for any environmental growing conditions (mean error < 20 %). |
Databáze: | OpenAIRE |
Externí odkaz: |