Privacy, Space and Time: a Survey on Privacy-Preserving Continuous Data Publishing

Autor: Dimitris Kotzinos, Katerina Tzompanaki, Manos Katsomallos
Přispěvatelé: Multimedia Indexation and Data Integration (MIDI), Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Spatial Information Science, Vol 2019, Iss 19, Pp 57-103 (2019)
Journal of Spatial Information Science
Journal of Spatial Information Science, 2019, ⟨10.5311/JOSIS.2019.19.493⟩
DOI: 10.5311/JOSIS.2019.19.493⟩
Popis: Sensors, portable devices, and location-based services, generate massive amounts of geo-tagged, and/or location- and user-related data on a daily basis. The manipulation of such data is useful in numerous application domains, e.g., healthcare, intelligent buildings, and traffic monitoring, to name a few. A high percentage of these data carry information of users' activities and other personal details, and thus their manipulation and sharing arise concerns about the privacy of the individuals involved. To enable the secure—from the users' privacy perspective—data sharing, researchers have already proposed various seminal techniques for the protection of users' privacy. However, the continuous fashion in which data are generated nowadays, and the high availability of external sources of information, pose more threats and add extra challenges to the problem. In this survey, we visit the works done on data privacy for continuous data publishing, and report on the proposed solutions, with a special focus on solutions concerning location or geo-referenced data.
Databáze: OpenAIRE