3D characterisation of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering

Autor: Elton de Lima Savi, Samuel Raetz, Vincent Tournat, Alain Bulou, Andreas Zerr, Théo Thréard, Sandeep Sathyan, Nikolay Chigarev, Vitalyi Gusev
Přispěvatelé: Laboratoire d'Acoustique de l'Université du Mans (LAUM), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Laboratoire Cogitamus, Zerr, Andreas
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Materials science
Coordinate system
Phase (waves)
General Physics and Astronomy
FOS: Physical sciences
02 engineering and technology
01 natural sciences
law.invention
Optics
law
Brillouin scattering
0103 physical sciences
[CHIM.CRIS]Chemical Sciences/Cristallography
Time domain
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
010306 general physics
ComputingMilieux_MISCELLANEOUS
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
Condensed Matter - Materials Science
business.industry
Materials Science (cond-mat.mtrl-sci)
021001 nanoscience & nanotechnology
Laser
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
Picosecond
Grain boundary
Crystallite
0210 nano-technology
business
[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]
Zdroj: Journal of Applied Physics
Journal of Applied Physics, American Institute of Physics, 2021, 130 (5), pp.053104. ⟨10.1063/5.0056814⟩
ISSN: 0021-8979
1089-7550
Popis: Time-domain Brillouin scattering uses ultrashort laser pulses to generate coherent acoustic pulses of picoseconds duration in a solid sample and to follow their propagation in order to image material inhomogeneities with sub-optical depth resolution. The width of the acoustic pulse limits the spatial resolution of the technique along the direction of the pulse propagation to less than several tens of nanometres. Thus, the time-domain Brillouin scattering outperforms axial resolution of the classical frequency-domain Brillouin scattering microscopy, which uses continuous lasers and thermal phonons and which spatial resolution is controlled by light focusing. The technique benefits from the application of the coherent acoustic phonons, and its application has exciting perspectives for the nanoscale imaging in biomedical and material sciences. In this study, we report on the application of the time-domain Brillouin scattering to the 3D imaging of a polycrystal of water ice containing two high-pressure phases. The imaging, accomplished via a simultaneous detection of quasi-longitudinal and quasi-shear waves, provided the opportunity to identify the phase for individual grains and evaluate their crystallographic orientation. Monitoring the propagation of the acoustic waves in two neighbouring grains simultaneously provided an additional mean for the localisation of the grain boundaries.
Comment: 20 pages, 9 figures
Databáze: OpenAIRE