3D characterisation of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering
Autor: | Elton de Lima Savi, Samuel Raetz, Vincent Tournat, Alain Bulou, Andreas Zerr, Théo Thréard, Sandeep Sathyan, Nikolay Chigarev, Vitalyi Gusev |
---|---|
Přispěvatelé: | Laboratoire d'Acoustique de l'Université du Mans (LAUM), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Laboratoire Cogitamus, Zerr, Andreas |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Coordinate system Phase (waves) General Physics and Astronomy FOS: Physical sciences 02 engineering and technology 01 natural sciences law.invention Optics law Brillouin scattering 0103 physical sciences [CHIM.CRIS]Chemical Sciences/Cristallography Time domain [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] 010306 general physics ComputingMilieux_MISCELLANEOUS [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] Condensed Matter - Materials Science business.industry Materials Science (cond-mat.mtrl-sci) 021001 nanoscience & nanotechnology Laser [PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] Picosecond Grain boundary Crystallite 0210 nano-technology business [PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] |
Zdroj: | Journal of Applied Physics Journal of Applied Physics, American Institute of Physics, 2021, 130 (5), pp.053104. ⟨10.1063/5.0056814⟩ |
ISSN: | 0021-8979 1089-7550 |
Popis: | Time-domain Brillouin scattering uses ultrashort laser pulses to generate coherent acoustic pulses of picoseconds duration in a solid sample and to follow their propagation in order to image material inhomogeneities with sub-optical depth resolution. The width of the acoustic pulse limits the spatial resolution of the technique along the direction of the pulse propagation to less than several tens of nanometres. Thus, the time-domain Brillouin scattering outperforms axial resolution of the classical frequency-domain Brillouin scattering microscopy, which uses continuous lasers and thermal phonons and which spatial resolution is controlled by light focusing. The technique benefits from the application of the coherent acoustic phonons, and its application has exciting perspectives for the nanoscale imaging in biomedical and material sciences. In this study, we report on the application of the time-domain Brillouin scattering to the 3D imaging of a polycrystal of water ice containing two high-pressure phases. The imaging, accomplished via a simultaneous detection of quasi-longitudinal and quasi-shear waves, provided the opportunity to identify the phase for individual grains and evaluate their crystallographic orientation. Monitoring the propagation of the acoustic waves in two neighbouring grains simultaneously provided an additional mean for the localisation of the grain boundaries. Comment: 20 pages, 9 figures |
Databáze: | OpenAIRE |
Externí odkaz: |