A quantitative boundary unique continuation for stochastic parabolic equations
Autor: | Qi Lü, Hongheng Li |
---|---|
Rok vydání: | 2013 |
Předmět: |
0209 industrial biotechnology
Boundary unique continuation property Property (philosophy) Applied Mathematics Global Carleman estimate 010102 general mathematics Mathematical analysis Boundary (topology) 02 engineering and technology 01 natural sciences Parabolic partial differential equation Continuation 020901 industrial engineering & automation Stochastic parabolic equations 0101 mathematics Analysis Mathematics |
Zdroj: | BIRD: BCAM's Institutional Repository Data instname |
Popis: | This paper is addressed to the boundary unique continuation property for forward stochastic parabolic equations, that is, to determine the value of the solution by virtue of the observation on an arbitrary open subset of the boundary. By means of a global Carleman estimate, we establish a quantitative version of this property. |
Databáze: | OpenAIRE |
Externí odkaz: |