The fibering method approach for a non-linear schrodinger equation coupled with the electromagnetic field

Autor: Gaetano Siciliano, Kaye Silva
Rok vydání: 2021
Předmět:
Zdroj: Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 64, no. 2 (2020), 373-390
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Popis: We study, with respect to the parameter $q\neq0$, the following Schr\"odinger-Bopp-Podolsky system in $\mathbb R^{3}$ \begin{equation*} \left\{ \begin{aligned} -&\Delta u+\omega u+q^2\phi u=|u|^{p-2}u, \\ &-\Delta \phi+a^2\Delta^2 \phi = 4\pi u^2, \end{aligned} \right. \end{equation*} where $p\in(2,3], \omega>0, a\geq0$ are fixed. We prove, by means of the fibering approach, that the system has no solutions at all for large values of $q's$, and has two radial solutions for small $q's$. We give also qualitative properties about the energy level of the solutions and a variational characterization of these extremals values of $q$. Our results recover and improve some results in the literature.
Databáze: OpenAIRE