AIMTOR, a BRET biosensor for live imaging, reveals subcellular mTOR signaling and dysfunctions

Autor: Lionel Tintignac, Elodie Jublanc, Enora Moutin, Nathalie Bouquier, Julien Averous, Yan Chastagnier, Michael Sinnreich, Amandine Reverbel, Chiara Verpelli, Vincent Ollendorff, Gilles Carnac, Tobias M. Boeckers, Julie Perroy, Pierre Fafournoux
Přispěvatelé: Institut de Génomique Fonctionnelle (IGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), University Hospital Basel [Basel], Dynamique Musculaire et Métabolisme (DMEM), Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de Nutrition Humaine (UNH), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Neurosciences, AMRI Hospitals, Universität Ulm - Ulm University [Ulm, Allemagne], Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp), European Research Council (ERC) 646788, grant of INRAE (department ALIMH), grant of INRAE (department PHASE), Region OccitanieRegion Ile-de-France, ANR-13-JSV4-0005,SYN CITY,Remodelage des complexes d'échafaudage: Dynamique et fonction du réceptosome de mGlu5 dans la plasticité synaptique(2013), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), MORNET, Dominique, Jeunes Chercheuses et Jeunes Chercheurs - Remodelage des complexes d'échafaudage: Dynamique et fonction du réceptosome de mGlu5 dans la plasticité synaptique - - SYN CITY2013 - ANR-13-JSV4-0005 - JC - VALID
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Diagnostic Imaging
[SDV.BIO]Life Sciences [q-bio]/Biotechnology
Physiology
mTor signaling
Biosensing Techniques
Plant Science
mTORC1
Mitochondrion
Biology
General Biochemistry
Genetics and Molecular Biology

Quadriceps Muscle
Mice
03 medical and health sciences
0302 clinical medicine
Structural Biology
Live cell imaging
Lysosome
[SDV.BBM] Life Sciences [q-bio]/Biochemistry
Molecular Biology

medicine
Animals
Humans
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Autism spectrum disorder
lcsh:QH301-705.5
Ecology
Evolution
Behavior and Systematics

PI3K/AKT/mTOR pathway
030304 developmental biology
Muscle differentiation
0303 health sciences
Neuronal activity
mTORC1 Biosensor
Muscle cell differentiation
TOR Serine-Threonine Kinases
Cell Biology
[SDV.BIO] Life Sciences [q-bio]/Biotechnology
Cell biology
Cytosol
HEK293 Cells
medicine.anatomical_structure
lcsh:Biology (General)
Phosphorylation
BRET
General Agricultural and Biological Sciences
030217 neurology & neurosurgery
mToropathies
Signal Transduction
Research Article
Developmental Biology
Biotechnology
Zdroj: BMC Biology, Vol 18, Iss 1, Pp 1-17 (2020)
BMC Biology
BMC Biology, 2020, 18 (1), pp.81. ⟨10.1186/s12915-020-00790-8⟩
BMC Biology, BioMed Central, 2020, 18 (1), pp.81. ⟨10.1186/s12915-020-00790-8⟩
ISSN: 1741-7007
Popis: BackgroundmTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells.ResultsAs a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder.ConclusionsAltogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje