Complex structure on the rational blowdown of sections in E(4)
Autor: | Yongnam Lee |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
Physics
Pure mathematics 14J10 Structure (category theory) Geometric Topology (math.GT) Mathematics::Geometric Topology Mathematics - Algebraic Geometry Mathematics - Geometric Topology Mathematics::Algebraic Geometry 53D05 14J29 14J17 $\mathbb{Q}$-Gorenstein smoothing Blowing down Elliptic surface FOS: Mathematics Boiler blowdown Algebraic Geometry (math.AG) Bidouble cover Mathematics::Symplectic Geometry Smoothing Symplectic geometry |
Zdroj: | Algebraic Geometry in East Asia — Seoul 2008, J. H. Keum, S. Kondō, K. Konno and K. Oguiso, eds. (Tokyo: Mathematical Society of Japan, 2010) |
Popis: | We show that there is a complex structure on the symplectic 4-manifold $W_{4, k}$ obtained from the elliptic surface E(4) by rationally blowing down $k$ sections for $2\le k\le 9$. And we interpret it via ${\mathbb Q}$-Gorenstein smoothing. This answers affirmatively to a question raised by R. Gompf. Minor changes are made. It will apper in Advanced Studies in Pure Mathematics (Proceeding of Algebraic Geometry in East Asia) |
Databáze: | OpenAIRE |
Externí odkaz: |