Classification Of Epileptic Electroencephalograms Using Time-Frequency And Back Propagation Methods
Autor: | Eylem Yücel Demirel, Hidayet Takci, Rüya Şamli, Şengül Bayrak |
---|---|
Rok vydání: | 2021 |
Předmět: |
System
Computer science Binary Pattern Acoustics Extracranial and intracranial electroencephalogram Wavelet Transform Hilbert transform Biomaterials back propagation Automated Diagnosis Approximate Entropy Eeg Electrical and Electronic Engineering finite impulse response filter signal classification Statistics fractional Fourier transform Backpropagation Computer Science Applications Time–frequency analysis Algorithm Mechanics of Materials Modeling and Simulation discrete cosine transform Seizure Detection Model |
Popis: | Today, electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor. These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain, such as epilepsy. Electroencephalogram (EEG) signals are however prone to artefacts. These artefacts must be removed to obtain accurate and meaningful signals. Currently, computer-aided systems have been used for this purpose. These systems provide high computing power, problem-specific development, and other advantages. In this study, a new clinical decision support system was developed for individuals to detect epileptic seizures using EEG signals. Comprehensive classification results were obtained for the extracted filtered features from the time-frequency domain. The classification accuracies of the time-frequency features obtained from discrete continuous transform (DCT), fractional Fourier transform (FrFT), and Hilbert transform (HT) are compared. Artificial neural networks (ANN) were applied, and back propagation (BP) was used as a learning method. Many studies in the literature describe a single BP algorithm. In contrast, we looked at several BP algorithms including gradient descent with momentum (GDM), scaled conjugate gradient (SCG), and gradient descent with adaptive learning rate (GDA). The most successful algorithm was tested using simulations made on three separate datasets (DCT_EEG, FrFT_EEG, and HT_EEG) that make up the input data. The HT algorithm was the most successful EEG feature extractor in terms of classification accuracy rates in each EEG dataset and had the highest referred accuracy rates of the algorithms. As a result, HT_EEG gives the highest accuracy for all algorithms, and the highest accuracy of 87.38% was produced by the SCG algorithm. Scientific Technological Research Council of Turkey (TuBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [118E682] This study was supported by The Scientific Technological Research Council of Turkey (TuBITAK) under the Project No. 118E682. |
Databáze: | OpenAIRE |
Externí odkaz: |