A Superpolynomial Lower Bound on the Size of Uniform Non-constant-depth Threshold Circuits for the Permanent

Autor: Sylvain Perifel, Pascal Koiran
Přispěvatelé: Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
FOS: Computer and information sciences
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
Polynomial
Computational complexity theory
Arithmetic circuits
uniform circuits
0102 computer and information sciences
02 engineering and technology
Computational Complexity (cs.CC)
01 natural sciences
Upper and lower bounds
permanent
Combinatorics
Log-log plot
arithmetic circuits
TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
0202 electrical engineering
electronic engineering
information engineering

lower bound
Mathematics
Electronic circuit
Discrete mathematics
threshold circuits
non-constant depth circuits
Computer Science - Computational Complexity
010201 computation theory & mathematics
Logic gate
020201 artificial intelligence & image processing
Constant (mathematics)
MathematicsofComputing_DISCRETEMATHEMATICS
Zdroj: IEEE Conference on Computational Complexity
Popis: We show that the permanent cannot be computed by DLOGTIME-uniform threshold or arithmetic circuits of depth o(log log n) and polynomial size.
Comment: 11 pages
Databáze: OpenAIRE