Characterization of the intracellular processing and secretion of hepatic lipase in FU5AH rat hepatoma cells

Autor: André Bensadoun, L A Cisar
Rok vydání: 1987
Předmět:
Zdroj: Biochimica et biophysica acta. 927(3)
ISSN: 0006-3002
Popis: The processing and secretion of newly synthesized hepatic lipase was characterized in FU5AH rat hepatoma cells. Pulse-chase experiments revealed two immunoreactive species with apparent molecular weights of 55,400 and 57,600. The 55.4 kDa species was detectable only in cell extracts, whereas the 57.6 kDa species was present in both cell extracts and media. Following a 5 min pulse with L-[35S]methionine and a 10 min chase, these two species represented only 0.003% of the total labelled protein. Quantitation of the 55.4 kDa and 57.6 kDa species in a chase time course taken together with their respective sensitivity and resistance to digestion with endo-beta-N-acetylglucosaminidase H indicates that the 55.4 kDa species is a high mannose precursor to the mature 57.6 kDa enzyme which contains only complex N-linked oligosaccharides. From a time course of endo-beta-N-acetylglucosaminidase H digestion, it was determined that hepatic lipase contains a minimum of two N-linked oligosaccharides. Treatment of the 55.4 kDa species with endo-beta-N-acetylglucosaminidase H yields a protein with a kDa value similar to that observed after treatment of the mature secreted enzyme with endo-beta-N-acetylglucosaminidase F or trifluoromethanesulfonic acid. Therefore, processing of N-linked oligosaccharides is probably the only post-translational modification responsible for the observed change in the apparent molecular weight of hepatic lipase. The half-residence times of hepatic lipase in the endoplasmic reticulum-cis Golgi region and in the cell were estimated at 34 min and 57 min, respectively. Newly synthesized hepatic lipase in Fu5AH cells is secreted constitutively and is not stored in an intracellular pool. Finally, little of the newly synthesized enzyme is degraded during the course of a 1 h chase.
Databáze: OpenAIRE