Autor: |
Kemal Saplioğlu, Tülay Suğra Küçükerdem Öztürk, Fatih Ahmet Şenel |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 6:93-104 |
ISSN: |
2459-1580 |
DOI: |
10.28979/comufbed.628846 |
Popis: |
Su kaynakları proje ve planlamalarının en etkili şekilde yapılabilmesi için düzenli olarak verilerin toplan-ması ve bu verilerin analiz edilmesi gerekmektedir. Ancak gerek maddi gerekse teknik nedenlerden dolayı bazı alanlarda veriler düzenli olarak toplanamamaktadır. Bu durum ise eksik veri problemini beraberinde getirmektedir. Eksik veri problemi su kaynaklarının planlanmasında, projelendirilmesinde ve yönetiminde birtakım sorunlar meydana getirmektedir. Bu problemin çözümü için ölçüm yapılan istasyona benzer nitelikteki diğer istasyon verilerine ihtiyaç duyulmaktadır. Eksik verilerin tamamlanması için literatürde çok farklı çalışmalar yapılmıştır. Bu çalışmada ise Türkiye’nin Yeşilırmak nehri üzerinde bulunan ölçüm istasyonları kullanılmıştır. Çalışmada Symbiotic Organisms Search (SOS) algoritması yardımı ile 3 farklı fonksiyon optimize edilmiştir. Ayrıca optimize edilen fonksiyonlar yapay sinir ağları, normal oran metodu ve çoklu regresyon yöntemlerinden elde edilen sonuçlar ile karşılaştırılmıştır. Oluşturulan modellerden elde edilen sonuçlar Mallows’s Cp ile test edilmiş ve sonuçların kabul edilebilir düzeyde olduğu görülmüş-tür. Yapay sinir ağları ile oluşturulan 6 adet modelin sonuçları ise normal oran metodu ve çoklu regresyo-na göre daha iyi sonuç vermesine rağmen Symbiotic Organisms Search optimizasyon yöntemi kadar başa-rılı olamamıştır. Yapay sinir ağları modellerinden en iyisi de bu çalışma için 8 nöronlu olarak tespit edil-miştir. Çalışmada SOS olmadan oluşturulan modellerin hata değerlerinin %3-%4 seviyelerinde olduğu, SOS ile optimize edilen fonksiyon sonuçlarının diğer yöntemlere göre daha iyi olduğu görülmüştür. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|