Popis: |
We propose a general approach that requires only a simple change of variable that keeps the valuation of call and put options (convertible bonds) with strike (conversion) price resets two-dimensional in the classical Black–Scholes setting. A link between reset derivatives, compound options and "discrete barrier" type options, when there is one reset is then discussed, from which we analyze the risk characteristics of reset derivatives, which can be significantly different from their vanilla counterparts. We also generalize the prototype reset structure and show that the delta and gamma of a convertible bond with reset can both be negative. Finally, we show that the "waviness" property found in the delta and gamma of some reset derivatives is due to the discontinuous nature of the reset structure, which is closely linked to digital options. |