From Poincaré inequalities to nonlinear matrix concentration
Autor: | De Huang, Joel A. Tropp |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | This paper deduces exponential matrix concentration from a Poincare inequality via a short, conceptual argument. Among other examples, this theory applies to matrix-valued functions of a uniformly log-concave random vector. The proof relies on the subadditivity of Poincare inequalities and a chain rule inequality for the trace of the matrix Dirichlet form. It also uses a symmetrization technique to avoid difficulties associated with a direct extension of the classic scalar argument. |
Databáze: | OpenAIRE |
Externí odkaz: |