Current distribution across type II superconducting films: a new vortex-free critical state
Autor: | W. P. Crump, Evgueni F. Talantsev, A. E. Pantoja, Jeffery L. Tallon |
---|---|
Rok vydání: | 2018 |
Předmět: |
Uniform distribution (continuous)
lcsh:Medicine FOS: Physical sciences 02 engineering and technology 01 natural sciences Article Superconductivity (cond-mat.supr-con) Condensed Matter::Superconductivity 0103 physical sciences lcsh:Science 010306 general physics Electrical conductor Critical field Superconductivity Physics Multidisciplinary Condensed matter physics Condensed Matter - Superconductivity lcsh:R 021001 nanoscience & nanotechnology Vortex lcsh:Q Current (fluid) 0210 nano-technology Current density Type-II superconductor |
Zdroj: | Scientific Reports Scientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
DOI: | 10.48550/arxiv.1811.12519 |
Popis: | The current distribution across the thickness of a current-carrying rectangular film in the Meissner state was established long ago by the London brothers. The distribution across the width is more complicated but was later shown to be highly non-uniform, diverging at the edges. Accordingly, the standard view for type II superconductors is that vortices enter at the edges and, with increasing current, are driven inwards until they self-annihilate at the centre, causing dissipation. This condition is presumed to define the critical current. However we have shown that, under self-field (no external field), the transport critical current is a London surface current where the surface current density equals the critical field divided by {\lambda}, across the entire width. The critical current distribution must therefore be uniform. Here we report studies of the current and field distribution across commercial YBa2Cu3O7 conductors and confirm the accepted non-uniform distribution at low current but demonstrate a radical crossover to a uniform distribution at critical current. This crossover ends discontinuously at a singularity and calculations quantitatively confirm these results in detail. The onset of self-field dissipation is, unexpectedly, thermodynamic in character and the implied vortex-free critical state seems to require new physics. Comment: 9 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |