Classification of Tactile and Motor Velocity-Evoked Hemodynamic Response in Primary Somatosensory and Motor Cortices as Measured by Functional Near-Infrared Spectroscopy
Autor: | Jacob Greenwood, Steven M. Barlow, Mohsen Hozan, Michaela Sullivan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
common spatial pattern
Haemodynamic response Pulsatile flow fNIRS Stimulus (physiology) Somatosensory system lcsh:Technology regularized discriminant analysis somatosensory lcsh:Chemistry 03 medical and health sciences 0302 clinical medicine pneumatic tactile stimulation General Materials Science Instrumentation lcsh:QH301-705.5 Analysis method 030304 developmental biology sensorimotor stroke rehabilitation Fluid Flow and Transfer Processes Physics 0303 health sciences neurorehabilitation lcsh:T Process Chemistry and Technology General Engineering lcsh:QC1-999 motor Computer Science Applications lcsh:Biology (General) lcsh:QD1-999 Cerebral hemodynamics lcsh:TA1-2040 Functional near-infrared spectroscopy neuroprotection lcsh:Engineering (General). Civil engineering (General) hemodynamic response Neuroscience 030217 neurology & neurosurgery lcsh:Physics |
Zdroj: | Applied Sciences Volume 10 Issue 10 Applied Sciences, Vol 10, Iss 3381, p 3381 (2020) |
ISSN: | 2076-3417 |
DOI: | 10.3390/app10103381 |
Popis: | Functional near-infrared spectroscopy (fNIRS) is an emerging technique in studying cerebral hemodynamics however, consensus on the analysis methods and the clinical applications has yet to be established. In this study, we demonstrate the results of a pilot fNIRS study of cerebral hemodynamic response (HR) evoked by pneumotactile and sensorimotor stimuli on the dominant hand. Our goal is to find the optimal stimulus parameters to maximally evoke HR in the primary somatosensory and motor cortices. We use a pulsatile pneumatic array of 14 tactile cells that were attached to the glabrous surface of the dominant hand, with a patterned stimulus that resembles saltation at three distinct traverse velocities [10, 25, and 45 cm/s]. NIRS optodes (16 sources 20 detectors) are bilaterally and symmetrically placed over the pre-and post-central gyri (M1 and S1). Our objective is to identify the extent to which cerebral HR can encode the velocity of the somatosensory and/or motor stimuli. We use common spatial pattern for feature extraction and regularized-discriminant analysis for classifying the fNIRS time series into velocity classes. The classification results demonstrate discriminatory features of the fNIRS signal from each distinct stimulus velocity. The results are inconclusive regarding the velocity which evokes the highest intensity of hemodynamic response. |
Databáze: | OpenAIRE |
Externí odkaz: |