Flagged parallel manipulators

Autor: M. Alberich-Carraminana, F. Thomas, C. Torras
Přispěvatelé: Ministerio de Ciencia y Tecnología (España), Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
Universitat Jaume I
Digital.CSIC. Repositorio Institucional del CSIC
instname
Popis: 11 pages, 16 figures.
The conditions for a parallel manipulator to be flagged can be simply expressed in terms of linear dependencies between the coordinates of its leg attachments, both on the base and on the platform. These dependencies permit to describe the manipulator singularities in terms of incidences between two flags (hence, the name ldquoflaggedrdquo). Although these linear dependencies might look, at first glance, too restrictive, in this paper, the family of flagged manipulators is shown to contain large subfamilies of six-legged and three-legged manipulators. The main interest of flagged parallel manipulators is that their singularity loci admit a well-behaved decomposition with a unique topology irrespective of the metrics of each particular design. In this paper, this topology is formally derived and all the cells, in the configuration space of the platform, of dimension 6 (nonsingular) and dimension 5 (singular), together with their adjacencies, are worked out in detail.
The work of F. Thomas and C. Torras was supported in part by the Spanish Ministry of Science and Technology (MCYT) under Project DPI2004-07358 and the Catalan Research Commission through the Robotics group. The work of M. Alberich-Carramiñana was supported in part by DGYCIT MTM2005-01518 and DGYCIT MTM2006-14234-C02-02 and the Catalan Research Commission.
http://hdl.handle.net/2117/2723
Databáze: OpenAIRE