Uniqueness of entropy solutions to fractional conservation laws with 'fully infinite' speed of propagation

Autor: Boris Andreianov, Matthieu Brassart
Přispěvatelé: Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Andreianov, Boris
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: Our goal is to study the uniqueness of bounded entropy solutions for a multidimensional conservation law including a non-Lipschitz convection term and a diffusion term of nonlocal porous medium type. The nonlocality is given by a fractional power of the Laplace operator. For a wide class of nonlinearities, the L 1-contraction principle is established, despite the fact that the "finite-infinite" speed of propagation [Alibaud, JEE 2007] cannot be exploited in our framework; existence is deduced with perturbation arguments. The method of proof, adapted from [Andreianov, Maliki, NoDEA 2010], requires a careful analysis of the action of the fractional laplacian on truncations of radial powers.
Databáze: OpenAIRE