T-motives

Autor: Luca Barbieri-Viale
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: Considering a (co)homology theory $\mathbb{T}$ on a base category $\mathcal{C}$ as a fragment of a first-order logical theory we here construct an abelian category $\mathcal{A}[\mathbb{T}]$ which is universal with respect to models of $\mathbb{T}$ in abelian categories. Under mild conditions on the base category $\mathcal{C}$, e.g. for the category of algebraic schemes, we get a functor from $\mathcal{C}$ to ${\rm Ch}({\rm Ind}(\mathcal{A}[\mathbb{T}]))$ the category of chain complexes of ind-objects of $\mathcal{A}[\mathbb{T}]$. This functor lifts Nori's motivic functor for algebraic schemes defined over a subfield of the complex numbers. Furthermore, we construct a triangulated functor from $D({\rm Ind}(\mathcal{A}[\mathbb{T}]))$ to Voevodsky's motivic complexes.
Comment: Added reference to arXiv:1604.00153 [math.AG]
Databáze: OpenAIRE