Low-Rank Matrix Recovery with Ky Fan 2-k-Norm

Autor: Stephen A. Vavasis, Xuan Vinh Doan
Přispěvatelé: Le Thi, H., Le, H., Pham Dinh, T.
Rok vydání: 2019
Předmět:
Zdroj: Advances in Intelligent Systems and Computing ISBN: 9783030218027
WCGO
ISSN: 0925-5001
DOI: 10.1007/978-3-030-21803-4_32
Popis: We propose Ky Fan 2-k-norm-based models for the nonconvex low-rank matrix recovery problem. A general difference of convex algorithm (DCA) is developed to solve these models. Numerical results show that the proposed models achieve high recoverability rates.
Comment: Accepted to WCGO 2019, 6th World Congress on Global Optimization, 8-10 July 2019
Databáze: OpenAIRE