α-Labelings of a Class of Generalized Petersen Graphs
Autor: | Anna Benini, Anita Pasotti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Discrete mathematics
labeling Linkless embedding Applied Mathematics α-labeling Voltage graph Graph decomposition Generalized Petersen graph Nowhere-zero flow graph decomposit generalized petersen graph Combinatorics Edge coloring Petersen family Petersen graph Odd graph QA1-939 Discrete Mathematics and Combinatorics Mathematics |
Zdroj: | Discussiones Mathematicae Graph Theory, Vol 35, Iss 1, Pp 43-53 (2015) |
ISSN: | 2083-5892 |
Popis: | An α-labeling of a bipartite graph Γ of size e is an injective function f : V (Γ) → {0, 1, 2, . . . , e} such that {|ƒ(x) − ƒ(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e} and with the property that its maximum value on one of the two bipartite sets does not reach its minimum on the other one. We prove that the generalized Petersen graph PSn,3 admits an α-labeling for any integer n ≥ 1 confirming that the conjecture posed by Vietri in [10] is true. In such a way we obtain an infinite class of decompositions of complete graphs into copies of PSn,3. |
Databáze: | OpenAIRE |
Externí odkaz: |