α-Labelings of a Class of Generalized Petersen Graphs

Autor: Anna Benini, Anita Pasotti
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 35, Iss 1, Pp 43-53 (2015)
ISSN: 2083-5892
Popis: An α-labeling of a bipartite graph Γ of size e is an injective function f : V (Γ) → {0, 1, 2, . . . , e} such that {|ƒ(x) − ƒ(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e} and with the property that its maximum value on one of the two bipartite sets does not reach its minimum on the other one. We prove that the generalized Petersen graph PSn,3 admits an α-labeling for any integer n ≥ 1 confirming that the conjecture posed by Vietri in [10] is true. In such a way we obtain an infinite class of decompositions of complete graphs into copies of PSn,3.
Databáze: OpenAIRE