Plugging-in proof development environments using Locks in LF
Autor: | Furio Honsell, Luigi Liquori, Ivan Scagnetto, Petar Maksimovic |
---|---|
Přispěvatelé: | Dipartimento di Matematica e Informatica - Universita Udine (DIMI), Università degli Studi di Udine - University of Udine [Italie], Logical Time for Formal Embedded System Design (KAIROS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbian Academy of Sciences and Arts (SASA), European Project: COST Action CA15123 ,COST - European Cooperation in Science and Technology,EUTYPES(2016), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES
Technology Record locking 0102 computer and information sciences 02 engineering and technology Type (model theory) Mathematics (miscellaneous) Computer Science Applications1707 Computer Vision and Pattern Recognition Mathematical proof computer.software_genre 01 natural sciences Oracle [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] Computation Theory & Mathematics ACM: F.: Theory of Computation/F.3: LOGICS AND MEANINGS OF PROGRAMS Computer Science Theory & Methods 0202 electrical engineering electronic engineering information engineering Set theory Mathematics 0802 Computation Theory and Mathematics Science & Technology Programming language PI-CALCULUS [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] MSCS Intuitionistic type theory FRAMEWORK Computer Science Applications Constraint (information theory) 010201 computation theory & mathematics Computer Science 020201 artificial intelligence & image processing Affine logic Algorithm computer |
Zdroj: | Mathematical Structures in Computer Science Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 28 (9), pp.1578--1605 Mathematical Structures in Computer Science, 2018, 28 (9), pp.1578--1605 |
ISSN: | 0960-1295 1469-8072 |
Popis: | We present two extensions of theLFconstructive type theory featuring monadiclocks. A lock is a monadic type construct that captures the effect of anexternal call to an oracle. Such calls are the basic tool forplugging-inand gluing together, different metalanguages and proof development environments. Oracles can be invoked either to check that a constraint holds or to provide a witness. The systems are presented in thecanonical styledeveloped by the ‘CMU School.’ The first system,CLLF𝒫, is the canonical version of the systemLLF𝒫, presented earlier by the authors. The second system,CLLF𝒫?, features the possibility of invoking the oracle to obtain also a witness satisfying a given constraint. In order to illustrate the advantages of our new frameworks, we show how to encode logical systems featuring rules that deeply constrain the shape of proofs. The locks mechanisms ofCLLF𝒫andCLLF𝒫?permit to factor out naturally the complexities arising from enforcing these ‘side conditions,’ which severely obscure standardLFencodings. We discuss Girard's Elementary Affine Logic, Fitch–Prawitz set theory, call-by-value λ-calculi and functions, both total and even partial. |
Databáze: | OpenAIRE |
Externí odkaz: |