Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations

Autor: Nour Seloula, Verónica Anaya, Ricardo Ruiz-Baier, David Mora, Carlos Reales, Héctor Torres, Afaf Bouharguane
Přispěvatelé: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Scientific Computing
Journal of Scientific Computing, Springer Verlag, 2019, 80 (3), pp.1577-1606. ⟨10.1007/s10915-019-00990-7⟩
ISSN: 0885-7474
1573-7691
DOI: 10.1007/s10915-019-00990-7⟩
Popis: We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pressure. The unique solvability of the continuous problem is addressed by invoking a global inf-sup property in an adequate abstract setting for non-symmetric systems. The proposed finite element schemes, which produce exactly divergence-free discrete velocities, are shown to be well-defined and optimal convergence rates are derived in suitable norms. This mixed finite element method is also pressure-robust. In addition, we establish optimal rates of convergence for a class of discontinuous Galerkin schemes, which employ stabilisation. A set of numerical examples serves to illustrate salient features of these methods.
Databáze: OpenAIRE