MICROSCOPE instrument description and validation

Autor: Stefanie Bremer, Ratana Chhun, Meike List, Bruno Christophe, Gilles Métris, Hanns Selig, Pascale Danto, Alain Robert, Yves André, Damien Boulanger, Pierre Touboul, Vincent Lebat, Frank Löffler, Joel Bergé, Manuel Rodrigues, Daniel Hagedorn, Benny Rievers, Phuong-Anh Huynh, Emilie Hardy, Françoise Liorzou, Bernard Foulon, Claus Laemmerzahl
Přispěvatelé: DPHY, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre National d'Études Spatiales [Toulouse] (CNES)
Rok vydání: 2020
Předmět:
microsatellite
General Relativity
noise
Physics - Instrumentation and Detectors
accelerometers
inertial sensor
Microscope
Physics and Astronomy (miscellaneous)
Capacitive sensing
satellite
Micro-satellite
electrostatic actuators
Mechanical engineering
FOS: Physical sciences
Space accelerometers
General Relativity and Quantum Cosmology (gr-qc)
space mission
Accelerometer
01 natural sciences
General Relativity and Quantum Cosmology
law.invention
Acceleration
law
0103 physical sciences
Digital control
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
Electronics
force: electrostatic
010306 general physics
Experimental Gravitation
Instrumentation and Methods for Astrophysics (astro-ph.IM)
detector: design
Equivalence Principle
Physics
capacitive sensing
010308 nuclear & particles physics
gravitation test
Instrumentation and Detectors (physics.ins-det)
Noise
capacitive sensors
detector: acceleration
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
control system
Astrophysics - Instrumentation and Methods for Astrophysics
performance
Position sensor
electronics: design
DOI: 10.48550/arxiv.2012.11232
Popis: Dedicated accelerometers have been developed for the MICROSCOPE mission taking into account the specific range of acceleration to be measured on board the satellite. Considering one micro-g and even less as the full range of the instrument, leads to a customized concept and a high performance electronics for the sensing and servo-actuations of the accelerometer test-masses. In addition to a very accurate geometrical sensor core, a high performance electronics architecture provides the measurement of the weak electrostatic forces and torques applied to the test-masses. A set of capacitive sensors delivers the position and the attitude of the test-mass with respect to a very steady gold coated cage made in silica. The voltages applied on the electrodes surrounding each test-mass are finely controlled to generate the adequate electrical field and so the electrostatic pressures on the test-mass. This field maintains the test-mass motionless with respect to the instrument structure. Digital control laws are implemented in order to enable instrument operation flexibility and a weak position sensor noise. These electronics provide both the scientific data for MICROSCOPE's test of General Relativity and the data for the satellite drag-free and attitude control system (DFACS).
Comment: To be submitted to CQG's MICROSCOPE special issue
Databáze: OpenAIRE