On the $C^*$-algebraic approach to topological phases for insulators
Autor: | Johannes Kellendonk |
---|---|
Přispěvatelé: | Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Nuclear and High Energy Physics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences Insulator (electricity) Topological space Topology 01 natural sciences [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 0103 physical sciences FOS: Mathematics [ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] Topological insulators 0101 mathematics Algebraic number Mathematical Physics Physics 19K99 Condensed Matter - Mesoscale and Nanoscale Physics Homotopy 010102 general mathematics K-Theory and Homology (math.KT) Statistical and Nonlinear Physics Observable Mathematical Physics (math-ph) [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] Homogeneous space Mathematics - K-Theory and Homology [ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] 010307 mathematical physics |
Zdroj: | Annales Henri Poincare Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. 〈10.1007/s00023-017-0583-0〉 Annales Henri Poincare, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩ Annales Henri Poincaré Annales Henri Poincaré, Springer Verlag, 2017, 18 (7), pp.2251-2300. ⟨10.1007/s00023-017-0583-0⟩ |
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-017-0583-0〉 |
Popis: | The notion of a topological phase of an insulator is based on the concept of homotopy between Hamiltonians. It therefore depends on the choice of a topological space to which the Hamiltonians belong. We advocate that this space should be the $C^*$-algebra of observables. We relate the symmetries of insulators to graded real structures on the observable algebra and classify the topological phases using van Daele's formulation of $K$-theory. This is related but not identical to Thiang's recent approach to classify topological phases by $K$-groups in Karoubi's formulation. Version 2 accidentally merged with version 1. Major generalisation of discussion of real structures. Version 4: Revision and errors corrected |
Databáze: | OpenAIRE |
Externí odkaz: |