Quasi-isotropic orbital magnetoresistance in lightly doped SrTiO$_{3}$

Autor: Anissa Acheche, Cyril Proust, Clément Collignon, Ravi, Xiao Lin, Benoît Fauqué, Kamran Behnia, Carl Willem Rischau, Yuki Fuseya, Yudai Awashima, B. Vignolle
Přispěvatelé: Jeunes Équipes de l'Institut de Physique du Collège de France (JEIPCdF), Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Engineering Science, University of Electro-Communications [Tokyo] (UEC), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute for Advanced Science, We thank M. Feigelman and B. Skinner for useful discussions. We acknowledge the support of the LNCMI-CNRS, member of the European Magnetic Field Laboratory (EMFL). This work was supported by JEIP-Collège de France, by the Agence Nationale de la Recherche (ANR-18-CE92-0020-01and ANR-19-CE30-0014-04) and by a grant attributed by the Ile de France regional council. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754387., ANR-18-CE92-0020,IFAS,Interaction entre ferroélctricité et la supraconductivité(2018), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Rok vydání: 2021
Předmět:
Electron mobility
Materials science
Physics and Astronomy (miscellaneous)
Magnetoresistance
FOS: Physical sciences
02 engineering and technology
Electron
01 natural sciences
Superconductivity (cond-mat.supr-con)
Condensed Matter - Strongly Correlated Electrons
symbols.namesake
Condensed Matter::Materials Science
0103 physical sciences
General Materials Science
010306 general physics
Condensed Matter - Materials Science
Condensed matter physics
Strongly Correlated Electrons (cond-mat.str-el)
Condensed Matter - Superconductivity
Materials Science (cond-mat.mtrl-sci)
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
Magnetic field
Orientation (vector space)
Dipole
symbols
Charge carrier
Condensed Matter::Strongly Correlated Electrons
0210 nano-technology
Lorentz force
Zdroj: Physical Review Materials
Physical Review Materials, American Physical Society, 2021, 5 (6), 065002 (6 p.). ⟨10.1103/PhysRevMaterials.5.065002⟩
Physical Review Materials, 2021, 5 (6), 065002 (6 p.). ⟨10.1103/PhysRevMaterials.5.065002⟩
ISSN: 2475-9953
DOI: 10.48550/arxiv.2101.09062
Popis: A magnetic field parallel to an electrical current does not produce a Lorentz force on the charge carriers. Therefore, orbital longitudinal magnetoresistance is unexpected. Here we report on the observation of a large and non saturating magnetoresistance in lightly doped SrTiO$_{3-x}$ independent of the relative orientation of current and magnetic field. We show that this quasi-isotropic magnetoresistance can be explained if the carrier mobility along all orientations smoothly decreases with magnetic field. This anomalous regime is restricted to low concentrations when the dipolar correlation length is longer than the distance between carriers. We identify cyclotron motion of electrons in a potential landscape tailored by polar domains as the cradle of quasi-isotropic orbital magnetoresistance. The result emerges as a challenge to theory and may be a generic feature of lightly-doped quantum paralectric materials.
Comment: S.M on request
Databáze: OpenAIRE