Integrable Aspects of Universal Quantum Transport in Chaotic Cavities

Autor: Eugene Kanzieper
Rok vydání: 2015
Předmět:
Zdroj: Constructive Approximation. 41:615-651
ISSN: 1432-0940
0176-4276
DOI: 10.1007/s00365-015-9276-4
Popis: The Painlev\'e transcendents discovered at the turn of the XX century by pure mathematical reasoning, have later made their surprising appearance -- much in the way of Wigner's "miracle of appropriateness" -- in various problems of theoretical physics. The notable examples include the two-dimensional Ising model, one-dimensional impenetrable Bose gas, corner and polynuclear growth models, one dimensional directed polymers, string theory, two dimensional quantum gravity, and spectral distributions of random matrices. In the present contribution, ideas of integrability are utilized to advocate emergence of an one-dimensional Toda Lattice and the fifth Painlev\'e transcendent in the paradigmatic problem of conductance fluctuations in quantum chaotic cavities coupled to the external world via ballistic point contacts. Specifically, the cumulants of the Landauer conductance of a cavity with broken time-reversal symmetry are proven to be furnished by the coefficients of a Taylor-expanded Painlev\'e V function. Further, the relevance of the fifth Painlev\'e transcendent for a closely related problem of sample-to-sample fluctuations of the noise power is discussed. Finally, it is demonstrated that inclusion of tunneling effects inherent in realistic point contacts does not destroy the integrability: in this case, conductance fluctuations are shown to be governed by a two-dimensional Toda Lattice.
Comment: A brief review mainly based on arXiv:0806.2784, arXiv:0902.3069 and arXiv:1111.5557; to appear in the Special Issue: Painlev\'e Equations -- Part II (Constructive Approximation, 2014)
Databáze: OpenAIRE