Normal Integration: A Survey
Autor: | Yvain Quéau, Jean-Denis Durou, Jean-François Aujol |
---|---|
Přispěvatelé: | Real Expression Artificial Life (IRIT-REVA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Technische Universität München - TUM (GERMANY), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France), Institut National Polytechnique de Toulouse - INPT (FRANCE) |
Rok vydání: | 2017 |
Předmět: |
FOS: Computer and information sciences
Statistics and Probability Mathematical optimization Gradient field Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition Integration Boundary (topology) integration 02 engineering and technology Classification of discontinuities normal field Image (mathematics) 0202 electrical engineering electronic engineering information engineering Boundary value problem Mathematics 3D-reconstruction Applied Mathematics 3D reconstruction [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 020207 software engineering Vision par ordinateur et reconnaissance de formes Condensed Matter Physics Photometric stereo [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] Modeling and Simulation Graph (abstract data type) 020201 artificial intelligence & image processing Normal field gradient field Geometry and Topology Computer Vision and Pattern Recognition Focus (optics) [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing Algorithm |
Zdroj: | Journal of Mathematical Imaging and Vision Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, 60 (4), pp.576-593. ⟨10.1007/s10851-017-0773-x⟩ |
ISSN: | 1573-7683 0924-9907 |
DOI: | 10.1007/s10851-017-0773-x |
Popis: | International audience; The need for efficient normal integration methods is driven by several computer vision tasks such as shape-from-shading, photometric stereo, deflectometry. In the first part of this survey, we select the most important properties that one may expect from a normal integration method, based on a thorough study of two pioneering works by Horn and rooks (Comput Vis Graph Image Process 33(2): 174-208, 1986) and Frankot and Chellappa (IEEE Trans Pattern Anal Mach Intell 10(4): 439-451, 1988). Apart from accuracy, an integration method should at least be fast and robust to a noisy normal field. In addition, it should be able to handle several types of boundary condition, including the case of a free boundary and a reconstruction domain of any shape, i.e., which is not necessarily rectangular. It is also much appreciated that a minimum number of parameters have to be tuned, or even no parameter at all. Finally, it should preserve the depth discontinuities. In the second part of this survey, we review most of the existing methods in view of this analysis and conclude that none of them satisfies all of the required properties. This work is complemented by a companion paper entitled Variational Methods for Normal Integration, in which we focus on the problem of normal integration in the presence of depth discontinuities, a problem which occurs as soon as there are occlusions. |
Databáze: | OpenAIRE |
Externí odkaz: |