Synchronization of chaos in fully developed turbulence
Autor: | Charles Meneveau, Gregory L. Eyink, Cristian Lalescu |
---|---|
Rok vydání: | 2012 |
Předmět: |
General Physics and Astronomy
FOS: Physical sciences Dynamical Systems (math.DS) 01 natural sciences 010305 fluids & plasmas law.invention Physics::Fluid Dynamics symbols.namesake law Intermittency 0103 physical sciences FOS: Mathematics Initial value problem Statistical physics Mathematics - Dynamical Systems 010306 general physics Mathematical Physics Physics Turbulence Synchronization of chaos Kolmogorov microscales Fluid Dynamics (physics.flu-dyn) Physics - Fluid Dynamics Mathematical Physics (math-ph) Dissipation Nonlinear Sciences - Chaotic Dynamics Nonlinear Sciences::Chaotic Dynamics Energy cascade symbols Chaotic Dynamics (nlin.CD) Equations for a falling body |
Zdroj: | Physical review letters. 110(8) |
ISSN: | 1079-7114 |
Popis: | We investigate chaos synchronization of small-scale motions in the three-dimensional turbulent energy cascade, via pseudo-spectral simulations of the incompressible Navier-Stokes equations. The modes of the turbulent velocity field below about 20 Kolmogorov dissipation lengths are found to be slaved to the chaotic dynamics of larger-scale modes. The dynamics of all dissipation-range modes can be recovered to full numerical precision by solving small-scale dynamical equations with the given large-scale solution as an input, regardless of initial condition. The synchronization rate exponent scales with the Kolmogorov dissipation time-scale, with possible weak corrections due to intermittency. Our results suggest that all sub-Kolmogorov length modes should be fully recoverable from numerical simulations with standard, Kolmogorov-length grid resolutions. Comment: 4 pages, two-column, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: |