The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake
Autor: | Sofie V. Hellsten, Robert Fredriksson, Mikaela M. Eriksson, Vasiliki Arapi, Emelie Perland, Emilia Lekholm |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Male SLC Protein domain Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology) Molecular Biology Microbiology Biochemistry or Biopharmacy) Biology Diet High-Fat Article Conserved sequence 03 medical and health sciences Cellular and Molecular Neuroscience Mice MFSD1 Protein Domains Animals Humans Amino Acids Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi) molekylärbiologi mikrobiologi biokemi eller biofarmaci) Ion transporter Conserved Sequence Phylogeny chemistry.chemical_classification Membrane transport protein Brain Membrane Transport Proteins Transporter General Medicine MFSD3 Transmembrane protein Major facilitator superfamily Amino acid Mice Inbred C57BL 030104 developmental biology chemistry Biochemistry Organ Specificity Starvation biology.protein Protein expression Female |
Zdroj: | Journal of Molecular Neuroscience |
Popis: | Membrane-bound solute carriers (SLCs) are essential as they maintain several physiological functions, such as nutrient uptake, ion transport and waste removal. The SLC family comprise about 400 transporters, and we have identified two new putative family members, major facilitator superfamily domain containing 1 (MFSD1) and 3 (MFSD3). They cluster phylogenetically with SLCs of MFS type, and both proteins are conserved in chordates, while MFSD1 is also found in fruit fly. Based on homology modelling, we predict 12 transmembrane regions, a common feature for MFS transporters. The genes are expressed in abundance in mice, with specific protein staining along the plasma membrane in neurons. Depriving mouse embryonic primary cortex cells of amino acids resulted in upregulation of Mfsd1, whereas Mfsd3 is unaltered. Furthermore, in vivo, Mfsd1 and Mfsd3 are downregulated in anterior brain sections in mice subjected to starvation, while upregulated specifically in brainstem. Mfsd3 is also attenuated in cerebellum after starvation. In mice raised on high-fat diet, Mfsd1 was specifically downregulated in brainstem and hypothalamus, while Mfsd3 was reduced consistently throughout the brain. |
Databáze: | OpenAIRE |
Externí odkaz: |