Efficient production of shinorine, a natural sunscreen material, from glucose and xylose by deleting HXK2 encoding hexokinase in Saccharomyces cerevisiae

Autor: Ji-Sook Hahn, Seokjun Moon, Sojeong Kim, Chaeyeon Jin, Hyunbin Jin
Rok vydání: 2021
Předmět:
Zdroj: FEMS Yeast Research. 21
ISSN: 1567-1364
DOI: 10.1093/femsyr/foab053
Popis: Mycosporine-like amino acids (MAAs), microbial secondary metabolites with ultraviolet (UV) absorption properties, are promising natural sunscreen materials. Due to the low efficiency of extracting MAAs from natural producers, production in heterologous hosts has recently received attention. Shinorine is a well characterized MAA with strong UV-A absorption property. Previous, we developed Saccharomyces cerevisiae strain producing shinorine by introducing four shinorine biosynthetic genes from cyanobacterium Nostoc punctiforme. Shinorine is produced from sedoheptulose 7-phosphate (S7P), an intermediate in the pentose phosphate pathway. Shinorine production was greatly improved by using xylose as a co-substrate, which can increase the S7P pool. However, due to a limited xylose-utilizing capacity of the engineered strain, glucose was used as a co-substrate to support cell growth. In this study, we further improved shinorine production by attenuating glucose catabolism via glycolysis, which can redirect the carbon flux from glucose to the pentose phosphate pathway favoring shinorine production. Of the strategies we examined to reduce glycolytic flux, deletion of HXK2, encoding hexokinase, was most effective in increasing shinorine production. Furthermore, by additional expression of Ava3858 from Anabaena variabilis, encoding a rate-limiting enzyme 2-demethyl 4-deoxygadusol synthase, 68.4 mg/L of shinorine was produced in an optimized medium containing 14 g/L glucose and 6 g/L xylose, achieving a 2.2-fold increase compared with the previous strain.
Databáze: OpenAIRE