Short-term prediction for nuclear power plant failure scenarios using an ensemble-based approach

Autor: Liu, J., Vitelli, V., Seraoui, R., Francesco Di Maio, Enrico Zio
Přispěvatelé: Laboratoire Génie Industriel - EA 2606 (LGI), CentraleSupélec, Chaire Sciences des Systèmes et Défis Energétiques EDF/ECP/Supélec (SSEC), Ecole Centrale Paris-Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-CentraleSupélec-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), EDF R&D (EDF R&D), EDF (EDF), Dipartimento di Energia [Milano] (DENG), Politecnico di Milano [Milan] (POLIMI)
Předmět:
Zdroj: Scopus-Elsevier
Safety, Reliability and Risk Analysis ISBN: 9781138001237
Proceedings of ESREL 2013
ESREL 2013
ESREL 2013, Sep 2013, Amsterdam, Netherlands. pp.1-5
Politecnico di Milano-IRIS
Popis: International audience; An ensemble-based approach is proposed for the short-term prediction. The proposed approach includes the selection of the inputs using Fuzzy Similarity Analysis (FSA), Probabilistic Support Vector Re-gression (SVR) model as the single model of the ensemble, and the derivation of the Prediction intervals as-sociated with the predicted value. A case study is shown, regarding the prediction of a drifting process param-eter of a Nuclear Power Plant (NPP) component.
Databáze: OpenAIRE