Satins, lattices, and extended Euclid's algorithm

Autor: Josep M. Brunat, Joan-C. Lario
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Motivated by the design of satins with draft of period m and step a, we draw our attention to the lattices $$L(m,a)=\langle (1,a),(0,m)\rangle$$ L ( m , a ) = ⟨ ( 1 , a ) , ( 0 , m ) ⟩ where $$1\le a 1 ≤ a < m are integers with $$\gcd (m,a)=1$$ gcd ( m , a ) = 1 . We show that the extended Euclid's algorithm applied to m and a produces a shortest no null vector of L(m, a) and that the algorithm can be used to find an optimal basis of L(m, a). We also analyze square and symmetric satins. For square satins, the extended Euclid's algorithm produces directly the two vectors of an optimal basis. It is known that symmetric satins have either a rectangular or a rombal basis; rectangular basis are optimal, but rombal basis are not always optimal. In both cases, we give the optimal basis directly in terms of m and a.
Databáze: OpenAIRE